Example of Convolution Operation

Specifications

  • Input Neuron (image): a 5×5 matrix
  • Kernel (Filter): a 3×3 matrix
  • Stride: 2 (the kernel moves 2 steps at a time)
  • Padding: 0 (no extra border of zeros around the input)

Step by Step

Input Matrix



Kernel Matrix



Stride

The kernel moves 2 steps horizontally or vertically at each step.

Padding

Since padding = 0, the output size is determined as:

Output Size = [(Input Size - Kernel Size) / Stride] + 1
             = [(5 - 3) / 2] + 1
             = 2

So the output is a 2×2 matrix.

Convolution Steps

Region 1 (Top-left corner)

Selected input region:



Computation:

(1×1)+(2×0)+(3×-1)+(0×1)+(1×0)+(2×-1)+(1×1)+(0×0)+(1×-1)
= 1 + 0 - 3 + 0 + 0 - 2 + 1 + 0 - 1 = -4

Region 2 (Top-right corner)

Selected input region:



Computation:

(3×1)+(0×0)+(1×-1)+(2×1)+(3×0)+(0×-1)+(1×1)+(2×0)+(3×-1)
= 3 + 0 - 1 + 2 + 0 + 0 + 1 + 0 - 3 = 2

Region 3 (Bottom-left corner)

Selected input region:



Computation:

(1×1)+(0×0)+(1×-1)+(2×1)+(1×0)+(0×-1)+(3×1)+(2×0)+(1×-1)
= 1 + 0 - 1 + 2 + 0 + 0 + 3 + 0 - 1 = 4

Region 4 (Bottom-right corner)

Selected input region:



Computation:

(1×1)+(2×0)+(3×-1)+(0×1)+(1×0)+(2×-1)+(1×1)+(0×0)+(1×-1)
= 1 + 0 - 3 + 0 + 0 - 2 + 1 + 0 - 1 = -4

Output (Feature Map)


News & Event

Example of Convolution Operation

Specifications

  • Input Neuron (image): a 5×5 matrix
  • Kernel (Filter): a 3×3 matrix
  • Stride: 2 (the kernel moves 2 steps at a time)
  • Padding: 0 (no extra border of zeros around the input)

Step by Step

Input Matrix



Kernel Matrix



Stride

The kernel moves 2 steps horizontally or vertically at each step.

Padding

Since padding = 0, the output size is determined as:

Output Size = [(Input Size - Kernel Size) / Stride] + 1
             = [(5 - 3) / 2] + 1
             = 2

So the output is a 2×2 matrix.

Convolution Steps

Region 1 (Top-left corner)

Selected input region:



Computation:

(1×1)+(2×0)+(3×-1)+(0×1)+(1×0)+(2×-1)+(1×1)+(0×0)+(1×-1)
= 1 + 0 - 3 + 0 + 0 - 2 + 1 + 0 - 1 = -4

Region 2 (Top-right corner)

Selected input region:



Computation:

(3×1)+(0×0)+(1×-1)+(2×1)+(3×0)+(0×-1)+(1×1)+(2×0)+(3×-1)
= 3 + 0 - 1 + 2 + 0 + 0 + 1 + 0 - 3 = 2

Region 3 (Bottom-left corner)

Selected input region:



Computation:

(1×1)+(0×0)+(1×-1)+(2×1)+(1×0)+(0×-1)+(3×1)+(2×0)+(1×-1)
= 1 + 0 - 1 + 2 + 0 + 0 + 3 + 0 - 1 = 4

Region 4 (Bottom-right corner)

Selected input region:



Computation:

(1×1)+(2×0)+(3×-1)+(0×1)+(1×0)+(2×-1)+(1×1)+(0×0)+(1×-1)
= 1 + 0 - 3 + 0 + 0 - 2 + 1 + 0 - 1 = -4

Output (Feature Map)


News & Event

Example of Convolution Operation

Specifications

  • Input Neuron (image): a 5×5 matrix
  • Kernel (Filter): a 3×3 matrix
  • Stride: 2 (the kernel moves 2 steps at a time)
  • Padding: 0 (no extra border of zeros around the input)

Step by Step

Input Matrix



Kernel Matrix



Stride

The kernel moves 2 steps horizontally or vertically at each step.

Padding

Since padding = 0, the output size is determined as:

Output Size = [(Input Size - Kernel Size) / Stride] + 1
             = [(5 - 3) / 2] + 1
             = 2

So the output is a 2×2 matrix.

Convolution Steps

Region 1 (Top-left corner)

Selected input region:



Computation:

(1×1)+(2×0)+(3×-1)+(0×1)+(1×0)+(2×-1)+(1×1)+(0×0)+(1×-1)
= 1 + 0 - 3 + 0 + 0 - 2 + 1 + 0 - 1 = -4

Region 2 (Top-right corner)

Selected input region:



Computation:

(3×1)+(0×0)+(1×-1)+(2×1)+(3×0)+(0×-1)+(1×1)+(2×0)+(3×-1)
= 3 + 0 - 1 + 2 + 0 + 0 + 1 + 0 - 3 = 2

Region 3 (Bottom-left corner)

Selected input region:



Computation:

(1×1)+(0×0)+(1×-1)+(2×1)+(1×0)+(0×-1)+(3×1)+(2×0)+(1×-1)
= 1 + 0 - 1 + 2 + 0 + 0 + 3 + 0 - 1 = 4

Region 4 (Bottom-right corner)

Selected input region:



Computation:

(1×1)+(2×0)+(3×-1)+(0×1)+(1×0)+(2×-1)+(1×1)+(0×0)+(1×-1)
= 1 + 0 - 3 + 0 + 0 - 2 + 1 + 0 - 1 = -4

Output (Feature Map)


News & Event

Example of Convolution Operation

Specifications

  • Input Neuron (image): a 5×5 matrix
  • Kernel (Filter): a 3×3 matrix
  • Stride: 2 (the kernel moves 2 steps at a time)
  • Padding: 0 (no extra border of zeros around the input)

Step by Step

Input Matrix



Kernel Matrix



Stride

The kernel moves 2 steps horizontally or vertically at each step.

Padding

Since padding = 0, the output size is determined as:

Output Size = [(Input Size - Kernel Size) / Stride] + 1
             = [(5 - 3) / 2] + 1
             = 2

So the output is a 2×2 matrix.

Convolution Steps

Region 1 (Top-left corner)

Selected input region:



Computation:

(1×1)+(2×0)+(3×-1)+(0×1)+(1×0)+(2×-1)+(1×1)+(0×0)+(1×-1)
= 1 + 0 - 3 + 0 + 0 - 2 + 1 + 0 - 1 = -4

Region 2 (Top-right corner)

Selected input region:



Computation:

(3×1)+(0×0)+(1×-1)+(2×1)+(3×0)+(0×-1)+(1×1)+(2×0)+(3×-1)
= 3 + 0 - 1 + 2 + 0 + 0 + 1 + 0 - 3 = 2

Region 3 (Bottom-left corner)

Selected input region:



Computation:

(1×1)+(0×0)+(1×-1)+(2×1)+(1×0)+(0×-1)+(3×1)+(2×0)+(1×-1)
= 1 + 0 - 1 + 2 + 0 + 0 + 3 + 0 - 1 = 4

Region 4 (Bottom-right corner)

Selected input region:



Computation:

(1×1)+(2×0)+(3×-1)+(0×1)+(1×0)+(2×-1)+(1×1)+(0×0)+(1×-1)
= 1 + 0 - 3 + 0 + 0 - 2 + 1 + 0 - 1 = -4

Output (Feature Map)


News & Event

Subscribe SUNIX eDM

Subscribe SUNIX eDM

Subscribe SUNIX eDM

Subscribe SUNIX eDM

Back to top
返回頂部
返回頂部